This paper proposes a novel way to solve transient linear, and non-linear solid dynamics for compressible, nearly incompressible, and incompressible material in the updated Lagrangian framework for tetrahedral unstructured finite elements. It consists of a mixed formulation in both displacement and pressure, where the momentum equation of the continuum is complemented with a pressure equation that handles incompresibility inherently. It is obtained through the deviatoric and volumetric split of the stress, that enables us to solve the problem in the incompressible limit. The Varitaional Multi-Scale method (VMS) is developed based on the orthogonal decomposition of the variables, which damps out spurious pressure fields for piece wise linear tetrahedral elements. Various numerical examples are presented to assess the robustness, accuracy and capabilities of our scheme in bending dominated problems, and for complex geometries.
翻译:本文提出了解决四面形非结构化有限元素更新的拉格朗格框架的可压缩、几乎不可压缩和不可压缩材料的瞬态线性和非线性固态动态的新方式。 它包含一种混合的组合组合式,既包括位移,也包括压力。 在这种组合中,连续体的动力方程式被一个压力方程式所补充,该方程式处理的是内在的不兼容性。 它通过压力的分解和体积分解获得,这使我们能够解决不可压缩极限中的问题。 Varitaial多层法(VMS)是根据变量的正方形分解法开发的,该方形分解了精细线形线形四面形元素的虚弱压力场。 提供了各种数字例子,以评估我们在弯曲支配的问题和复杂地貌方面的计划是否稳健、准确和有能力。