The proliferation of interconnected battlefield information-sharing devices, known as the Internet of Battlefield Things (IoBT), introduced several security challenges. Inherent to the IoBT operating environment is the practice of adversarial machine learning, which attempts to circumvent machine learning models. This work examines the feasibility of cost-effective unsupervised learning and graph-based methods for anomaly detection in the network intrusion detection system setting, and also leverages an ensemble approach to supervised learning of the anomaly detection problem. We incorporate a realistic adversarial training mechanism when training supervised models to enable strong classification performance in adversarial environments. The results indicate that the unsupervised and graph-based methods were outperformed in detecting anomalies (malicious activity) by the supervised stacking ensemble method with two levels. This model consists of three different classifiers in the first level, followed by either a Naive Bayes or Decision Tree classifier for the second level. The model maintains an F1-score above 0.97 for malicious samples across all tested level two classifiers. Notably, Naive Bayes is the fastest level two classifier averaging 1.12 seconds while Decision Tree maintains the highest AUC score of 0.98.


翻译:相互关联的战场信息共享装置(称为战地物品互联网)的扩散带来了若干安全挑战。IoBT操作环境固有的是对抗性机器学习的做法,这种做法试图绕过机器学习模式。这项工作审查了在网络入侵探测系统设置中以成本效益高的、不受监督的学习和图表为基础的方法在网络入侵探测系统设置中异常探测的可行性,还利用共同方法监督地了解异常探测问题。在培训受监督的模型时,我们采用了现实的对抗性培训机制,以便在对抗性环境中实现强有力的分类性能。结果显示,未经监督和基于图表的方法在通过监督的堆叠共体方法检测异常(恶意活动)方面表现得超过两级,该模型由第一级的三个不同的分类者组成,其次是一个纳米湾或第二个层次的决定树分类者。该模型在所有测试的二级分类者中保留了超过0.97的恶性样品的F1标记。值得注意的是,Naive Bayes是速度最快的2级分类数级,平均为1.12秒,而决定树的等级为0.98最高分。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
专知会员服务
32+阅读 · 2021年9月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
20+阅读 · 2020年6月8日
Polarity Loss for Zero-shot Object Detection
Arxiv
3+阅读 · 2018年11月22日
Arxiv
3+阅读 · 2018年6月5日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员