In this paper, we derive a novel method as a generalization over LCEs such as E2C. The method develops the idea of learning a locally linear state space, by adding a multi-step prediction, thus allowing for more explicit control over the curvature. We show, that the method outperforms E2C without drastic model changes which come with other works, such as PCC and P3C. We discuss the relation between E2C and the presented method and derived update equations. We provide empirical evidence, which suggests that by considering the multi-step prediction our method - ms-E2C - allows to learn much better latent state spaces in terms of curvature and next state predictability. Finally, we also discuss certain stability challenges we encounter with multi-step predictions and the ways to mitigate them.
翻译:在本文中,我们得出了一种新颖的方法,作为对LCE(如E2C)的概括。该方法通过增加多步预测,发展了学习本地线性状态空间的想法,从而可以对曲线进行更明确的控制。我们表明,该方法在不因其他工程(如PCC和P3C)而发生急剧模型变化的情况下,优于E2C。我们讨论了E2C与所提出的方法和衍生的更新方程式之间的关系。我们提供了经验证据,表明通过考虑多步预测,我们的方法(ms-E2C)能够从曲线和下一个状态的可预测性方面学习更好的潜在状态空间。最后,我们还讨论了我们在多步预测中遇到的某些稳定挑战以及减轻这些挑战的方法。