Consider a normal location model $X \mid \theta \sim N(\theta, \sigma^2)$ with known $\sigma^2$. Suppose $\theta \sim G_0$, where the prior $G_0$ has zero mean and variance bounded by $V$. Let $G_1$ be a possibly misspecified prior with zero mean and variance bounded by $V$. We show that the squared error Bayes risk of the posterior mean under $G_1$ is bounded, subjected to an additional tail condition on $G_1$, uniformly over $G_0, G_1, \sigma^2 > 0$.


翻译:暂无翻译

1
下载
关闭预览

相关内容

【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
138+阅读 · 2022年9月17日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
VIP会员
相关VIP内容
【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
138+阅读 · 2022年9月17日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员