Adversarial examples represent a great security threat for deep learning systems, pushing researchers to develop suitable defense mechanisms. The use of networks adopting error-correcting output codes (ECOC) has recently been proposed to deal with white-box attacks. In this paper, we carry out an in-depth investigation of the security achieved by the ECOC approach. In contrast to previous findings, our analysis reveals that, when the attack in the white-box framework is carried out properly, the ECOC scheme can be attacked by introducing a rather small perturbation. We do so by considering both the popular adversarial attack proposed by Carlini and Wagner (C&W) and a new variant of C&W attack specifically designed for multi-label classification architectures, like the ECOC-based structure. Experimental results regarding different classification tasks demonstrate that ECOC networks can be successfully attacked by both the original C&W attack and the new attack.


翻译:反对立实例对深层学习系统构成了巨大的安全威胁,迫使研究人员开发适当的防御机制。最近有人提议使用采用错误校正产出代码的网络来对付白箱袭击。在本文件中,我们深入调查了ECO方法所取得的安全性。与以前的调查结果相反,我们的分析表明,当白箱框架中的攻击进行得当时,EEC计划可以通过引入相当小的干扰来攻击。我们这样做是因为考虑到Carlini和Wagner(C&W)提出的流行对抗性攻击,以及专门为多标签分类结构设计的新的C&W攻击变种,如ECOC结构。关于不同分类任务的实验结果表明,EEC网络可以成功地受到原C&W攻击和新攻击的打击。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年4月14日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
6+阅读 · 2020年4月14日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
11+阅读 · 2018年3月23日
Top
微信扫码咨询专知VIP会员