We show the existence of an exact mimicking network of $k^{O(\log k)}$ edges for minimum multicuts over a set of terminals in an undirected graph, where $k$ is the total capacity of the terminals, as well as a method for computing a mimicking network of quasipolynomial size in polynomial time. As a consequence of the latter, several problems are shown to have quasipolynomial kernels, including Edge Multiway Cut, Group Feedback Edge Set for an arbitrary group, and Edge Multicut parameterized by the solution and the number of cut requests. The result combines the matroid-based irrelevant edge approach used in the kernel for $s$-Multiway Cut with a recursive decomposition and sparsification of the graph along sparse cuts. This is the first progress on the kernelization of Multiway Cut problems since the kernel for $s$-Multiway Cut for constant value of $s$ (Kratsch and Wahlstr\"om, FOCS 2012).
翻译:我们在一个未定向的图表中显示,在一组终端上存在精确的模拟网络$k ⁇ O(\log k) 美元边缘,用于最小的多截面,其中K$是终端的总容量,以及一种在多元时间计算半球体大小的模拟网络的方法。由于后者,若干问题显示出存在准极性内核,包括多路断裂,任意集团的集团反馈边缘,以及因解决方案和截断请求数量而形成的埃格多截参数。结果将以机器人为基础的无关边缘方法与以美元-多路断层为主的图形的循环分解和封闭结合起来。这是多路切断层问题内核化的第一个进展,因为内核为美元(Kratsch和Wahlstr”om,FOSCS,2012年)。