In this report, we define (plain) Dag-like derivations in the purely implicational fragment of minimal logic $M_{\imply}$. Introduce the horizontal collapsing set of rules and the algorithm {\bf HC}. Explain why {\bf HC} can transform any polynomial height-bounded tree-like proof of a $M_{\imply}$ tautology into a smaller dag-like proof. Sketch a proof that {\bf HC} preserves the soundness of any tree-like ND in $M_{\imply}$ in its dag-like version after the horizontal collapsing application. We show some experimental results about applying the compression method to a class of (huge) propositional proofs and an example, with non-hamiltonian graphs, for qualitative analysis. The contributions include the comprehensive presentation of the set of horizontal compression (HC), the (sketch) of a proof that HC rules preserve soundness and the demonstration that the compressed dag-like proofs are polynomially upper-bounded when the submitted tree-like proof is height and foundation poly-bounded. Finally, in the appendix, we show an algorithm that verifies in polynomial time on the size of the dag-like proofs whether they are valid proofs of their conclusions.
翻译:在本报告中, 我们定义( plain) 类似 Dag 的纯粹隐含的最小逻辑 $M ⁇ imply} $ 。 引入水平崩溃的规则和算法 {bf HC} 。 解释为什么 {bf HC} 可以将 $M impsly} $ 字形树上的任何多盘高比树高的证明转换成更小的标记。 涂抹一个证据, 证明 {bf HC} 在横向崩溃应用后, 将类似树的 ND 以$$M impsly} 保存在类似树的版本中的正确性。 我们展示了一些实验结果, 将压缩方法应用到某类( huge) 的标本证据和示例, 加上非 Hamilton 的图表, 用于定性分析。 贡献包括完整地展示了 水平压缩的成套证据 (HC), (sket) 证明 HC 保存任何类似树的正确性的证据, 以及 类似缩制的证明在提交像树样的证据的版本中, 当提交的证据是树状证据的高度和基础时, 我们是否以缩订定的缩的缩成的缩成的缩成的缩成的缩缩缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的算法, 。 最后的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的缩成的