Avoiding the introduction of ghosts when synthesising LDR images as high dynamic range (HDR) images is a challenging task. Convolutional neural networks (CNNs) are effective for HDR ghost removal in general, but are challenging to deal with the LDR images if there are large movements or oversaturation/undersaturation. Existing dual-branch methods combining CNN and Transformer omit part of the information from non-reference images, while the features extracted by the CNN-based branch are bound to the kernel size with small receptive field, which are detrimental to the deblurring and the recovery of oversaturated/undersaturated regions. In this paper, we propose a novel hierarchical dual Transformer method for ghost-free HDR (HDT-HDR) images generation, which extracts global features and local features simultaneously. First, we use a CNN-based head with spatial attention mechanisms to extract features from all the LDR images. Second, the LDR features are delivered to the Hierarchical Dual Transformer (HDT). In each Dual Transformer (DT), the global features are extracted by the window-based Transformer, while the local details are extracted using the channel attention mechanism with deformable CNNs. Finally, the ghost free HDR image is obtained by dimensional mapping on the HDT output. Abundant experiments demonstrate that our HDT-HDR achieves the state-of-the-art performance among existing HDR ghost removal methods.
翻译:避免在合成低动态范围(LDR)图像作为高动态范围(HDR)图像时引入幽灵图像是一个具有挑战性的任务。在众多场合中,卷积神经网络(CNN)通常被广泛使用在HDR幽灵图像去除上,然而在LDR图像中,如果存在大的移动或过饱和/欠饱和,CNN方法难以处理。现有的结合CNN和变压器的双分支方法省略了非参考图像的部分信息,而且基于CNN的分支提取的特征增加后其感受野相对较小,对去模糊和对过饱和/欠饱和区域的恢复不利。在本文中,我们提出了一种新的基于上下文感知变压器的高动态范围成像方法,可以实现无幽灵Ghosts的HDR图像生成,同时提取全局特征和本地特征。首先,我们使用带有空间注意机制的基于CNN的头部从所有LDR图像中提取特征。 其次,将LDR特征传递给分层双变压器(HDT)。在每个双变压器(DT)中,全局特征由基于窗口的变压器提取,而本地细节则使用带有可变形CNN的通道注意机制进行提取。最后,通过HDT输出进行尺寸映射,获得无幽灵HDR图像。丰富的实验表明,我们的HDT-HDR在现有HDR幽灵图像去除方法中实现了最先进的性能。