Avoiding the introduction of ghosts when synthesising LDR images as high dynamic range (HDR) images is a challenging task. Convolutional neural networks (CNNs) are effective for HDR ghost removal in general, but are challenging to deal with the LDR images if there are large movements or oversaturation/undersaturation. Existing dual-branch methods combining CNN and Transformer omit part of the information from non-reference images, while the features extracted by the CNN-based branch are bound to the kernel size with small receptive field, which are detrimental to the deblurring and the recovery of oversaturated/undersaturated regions. In this paper, we propose a novel hierarchical dual Transformer method for ghost-free HDR (HDT-HDR) images generation, which extracts global features and local features simultaneously. First, we use a CNN-based head with spatial attention mechanisms to extract features from all the LDR images. Second, the LDR features are delivered to the Hierarchical Dual Transformer (HDT). In each Dual Transformer (DT), the global features are extracted by the window-based Transformer, while the local details are extracted using the channel attention mechanism with deformable CNNs. Finally, the ghost free HDR image is obtained by dimensional mapping on the HDT output. Abundant experiments demonstrate that our HDT-HDR achieves the state-of-the-art performance among existing HDR ghost removal methods.


翻译:避免在合成低动态范围(LDR)图像作为高动态范围(HDR)图像时引入幽灵图像是一个具有挑战性的任务。在众多场合中,卷积神经网络(CNN)通常被广泛使用在HDR幽灵图像去除上,然而在LDR图像中,如果存在大的移动或过饱和/欠饱和,CNN方法难以处理。现有的结合CNN和变压器的双分支方法省略了非参考图像的部分信息,而且基于CNN的分支提取的特征增加后其感受野相对较小,对去模糊和对过饱和/欠饱和区域的恢复不利。在本文中,我们提出了一种新的基于上下文感知变压器的高动态范围成像方法,可以实现无幽灵Ghosts的HDR图像生成,同时提取全局特征和本地特征。首先,我们使用带有空间注意机制的基于CNN的头部从所有LDR图像中提取特征。 其次,将LDR特征传递给分层双变压器(HDT)。在每个双变压器(DT)中,全局特征由基于窗口的变压器提取,而本地细节则使用带有可变形CNN的通道注意机制进行提取。最后,通过HDT输出进行尺寸映射,获得无幽灵HDR图像。丰富的实验表明,我们的HDT-HDR在现有HDR幽灵图像去除方法中实现了最先进的性能。

0
下载
关闭预览

相关内容

中科院自动化所17篇CVPR 2022 新作速览!
专知会员服务
19+阅读 · 2022年3月19日
专知会员服务
22+阅读 · 2021年9月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月5日
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
13+阅读 · 2017年12月5日
VIP会员
相关VIP内容
中科院自动化所17篇CVPR 2022 新作速览!
专知会员服务
19+阅读 · 2022年3月19日
专知会员服务
22+阅读 · 2021年9月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员