Deep neural networks (DNNs) have become the technology of choice for realizing a variety of complex tasks. However, as highlighted by many recent studies, even an imperceptible perturbation to a correctly classified input can lead to misclassification by a DNN. This renders DNNs vulnerable to strategic input manipulations by attackers, and also prone to oversensitivity to environmental noise. To mitigate this phenomenon, practitioners apply joint classification by an ensemble of DNNs. By aggregating the classification outputs of different individual DNNs for the same input, ensemble-based classification reduces the risk of misclassifications due to the specific realization of the stochastic training process of any single DNN. However, the effectiveness of a DNN ensemble is highly dependent on its members not simultaneously erring on many different inputs. In this case study, we harness recent advances in DNN verification to devise a methodology for identifying ensemble compositions that are less prone to simultaneous errors, even when the input is adversarially perturbed -- resulting in more robustly-accurate ensemble-based classification. Our proposed framework uses a DNN verifier as a backend, and includes heuristics that help reduce the high complexity of directly verifying ensembles. More broadly, our work puts forth a novel universal objective for formal verification that can potentially improve the robustness of real-world, deep-learning-based systems across a variety of application domains.


翻译:深心神经网络(DNNs)已成为实现各种复杂任务的首选技术。然而,正如许多最近研究所强调,即使无法察觉到对正确机密输入的干扰也可能导致DNN的分类错误。这使得DNNs很容易受到攻击者对战略输入的操纵,也容易对环境噪音产生过度敏感。为了缓解这种现象,实践者采用由一组DNNs组成的共同分类方法,将不同的单个 DNS的分类产出归结为相同输入的多种内容,混合型分类减少了由于具体实现任何单一的DNNS的随机化培训过程而导致的分类错误风险。然而,DNNN(DNS)的效用在很大程度上取决于其成员,而不是同时误差许多不同的输入。在案例研究中,我们利用DNNN核查的最新进展来设计一种方法,用以识别不易同时出现错误的堆积构成,即使投入是相互对立的,但是由于任何单一DNN(D)网络的深度应用的深度应用,因此导致更可靠、更精确的深度的分类。我们提出的框架使用一个更复杂的全球(NN)系统,可以直接核查一个更精确的、更精确的、更精确的、更精确的、更精确的、更精确的、更精确的核查。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员