Despite recent progress in generative adversarial network (GAN)-based vocoders, where the model generates raw waveform conditioned on acoustic features, it is challenging to synthesize high-fidelity audio for numerous speakers across various recording environments. In this work, we present BigVGAN, a universal vocoder that generalizes well for various out-of-distribution scenarios without fine-tuning. We introduce periodic activation function and anti-aliased representation into the GAN generator, which brings the desired inductive bias for audio synthesis and significantly improves audio quality. In addition, we train our GAN vocoder at the largest scale up to 112M parameters, which is unprecedented in the literature. We identify and address the failure modes in large-scale GAN training for audio, while maintaining high-fidelity output without over-regularization. Our BigVGAN, trained only on clean speech (LibriTTS), achieves the state-of-the-art performance for various zero-shot (out-of-distribution) conditions, including unseen speakers, languages, recording environments, singing voices, music, and instrumental audio. We release our code and model at: https://github.com/NVIDIA/BigVGAN
翻译:尽管在基因对抗网络(GAN)上,该模型产生以声学特征为条件的原始波形,尽管在这种模型产生以声学特征为条件的原始波形器方面最近取得了进展,但为各种录音环境中的众多发言者合成高纤维音频仍具有挑战性。在这项工作中,我们介绍了BigVGAN,这是一个通用电动器,在不作微调的情况下,对各种传播外的情景进行概括化的通用电动器。我们引入了定期激活功能和反丑化的表达功能,使GAN生成器对音频合成产生预期的感性偏差,并大大提高音质。此外,我们还在最大程度上培训我们的GAN电动电动电动器,达到112M参数,这在文献中是前所未有的。我们在大规模GAN音频培训中确定并解决失败模式,同时保持高纤维化输出,不作过度的调整。我们的大VGAN,仅对清洁言语进行了培训(LibriTTTS),在各种零发式(外传音频)条件下达到最先进的性性性性表现。此外的性能。此外,包括隐形演讲者、语言、录音环境、歌声频、声音、声音、声音、音乐、音乐、音乐、音乐、音乐、音乐、音乐、音乐、音乐、音乐和声频/GNVAG.NVA.NVA/G.NVA/G.我们解码。