In this paper, we describe a numerical technique for the solution of macroscopic traffic flow models on networks of roads. On individual roads, we consider the standard Lighthill-Whitham-Richards model which is discretized using the discontinuous Galerkin method along with suitable limiters. In order to solve traffic flows on networks, we construct suitable numerical fluxes at junctions based on preferences of the drivers. We prove basic properties of the constructed numerical flux and the resulting scheme and present numerical experiments, including a junction with complicated traffic light patterns with multiple phases. Differences with the approach to numerical fluxes at junctions from \v{C}ani\'{c} et al., 2015, are discussed and demonstrated numerically on a simple network.
翻译:在本文中,我们描述了解决公路网络上大型交通流量模式的数值技术。 在个别公路上,我们考虑了标准的Lighthill-Whitham-Richards模型,该模型使用不连续的Galerkin方法与适当的限制器分离。为了解决网络上的交通流量问题,我们根据司机的偏好,在路口建造适当的数字通量。我们证明了构建的数字通量和由此产生的图案的基本特性,以及目前的数字实验,包括与复杂的交通流量模式和多个阶段的交接点。对2015年在\v{C}ani\{c}等连接点的数字通量方法的不同,在简单的网络上讨论并用数字方式展示。