The transition from a microscopic model for the movement of many particles to a macroscopic continuum model for a density flow is studied. The microscopic model for the free flow is completely deterministic, described by an interaction potential that leads to a coherent motion where all particles move in the same direction with the same speed known as a flock. Interaction of the flock with boundaries, obstacles and other flocks leads to a temporary destruction of the coherent motion that macroscopically can be modeled through density dependent diffusion. The resulting macroscopic model is an advection-diffusion equation for the particle density whose diffusion coefficient is density dependent. Examples describing i) the interaction of material flow on a conveyor belt with an obstacle that redirects or restricts the material flow and ii) the interaction of flocks (of fish or birds) with boundaries and iii) the scattering of two flocks as they bounce off each other are discussed. In each case, the advection-diffusion equation is strictly hyperbolic before and after the interaction while the interaction phase is described by a parabolic equation. A numerical algorithm to solve the advection-diffusion equation through the transition is presented.
翻译:正在研究从一个微粒移动的微型模型向一个密度流的宏观连续模型的转变。 用于自由流的微观模型是完全确定性的, 其描述为: 一种相互作用潜力, 导致一个一致的运动, 使所有颗粒以同样的速度以同一种速度移动, 以同一种速度( 以群群) 。 羊群与边界、 障碍和其他群群的相互作用导致通过密度依附性扩散模式模拟的宏观集成性运动的暂时性破坏。 由此形成的宏观模型是对于扩散系数取决于密度的粒子密度的微粒密度的吸附- 扩散方程式。 举例说明 i) 传送带的物质流动的相互作用, 障碍是改变或限制物质流动, 以及 (鱼类或鸟类) 群群群与边界和( ) 相互作用, 讨论它们相互反射时将两个群群群散开来。 在每种情况下, 适应- 消化方程式在互动阶段之前和之后都是严格的超音化方程式, 而互动阶段则由parlic 方方方程式描述。 提出的通过数字算法来解- 。