Given a reference model that includes all the available variables, projection predictive inference replaces its posterior with a constrained projection including only a subset of all variables. We extend projection predictive inference to enable computationally efficient variable and structure selection in models outside the exponential family. By adopting a latent space projection predictive perspective we are able to: 1) propose a unified and general framework to do variable selection in complex models while fully honouring the original model structure, 2) properly identify relevant structure and retain posterior uncertainties from the original model, and 3) provide an improved approach also for non-Gaussian models in the exponential family. We demonstrate the superior performance of our approach by thoroughly testing and comparing it against popular variable selection approaches in a wide range of settings, including realistic data sets. Our results show that our approach successfully recovers relevant terms and model structure in complex models, selecting less variables than competing approaches for realistic datasets.
翻译:根据包含所有现有变量的参考模型,预测预测推论用一个受限的预测替代其后半部,只包括所有变量的一个子集。我们扩大预测推论,以便能够在指数式家庭以外的模型中进行计算效率高的变量和结构选择。通过采用潜在的空间预测预测视角,我们可以:(1) 提出一个统一和一般的框架,以便在复杂的模型中进行变量选择,同时充分尊重原始模型结构;(2) 适当确定相关结构并保留原始模型中的后部不确定性;(3) 也为指数式大家庭中的非高加索模型提供更好的方法。我们通过在包括现实数据集在内的广泛环境中与流行变量选择方法进行彻底测试和比较,展示了我们方法的优异性。我们的结果显示,我们的方法成功地恢复了复杂模型中的相关术语和模型结构,选择的变量少于实际数据集的竞争性方法。