Given a reference model that includes all the available variables, projection predictive inference replaces its posterior with a constrained projection including only a subset of all variables. We extend projection predictive inference to enable computationally efficient variable and structure selection in models outside the exponential family. By adopting a latent space projection predictive perspective we are able to: 1) propose a unified and general framework to do variable selection in complex models while fully honouring the original model structure, 2) properly identify relevant structure and retain posterior uncertainties from the original model, and 3) provide an improved approach also for non-Gaussian models in the exponential family. We demonstrate the superior performance of our approach by thoroughly testing and comparing it against popular variable selection approaches in a wide range of settings, including realistic data sets. Our results show that our approach successfully recovers relevant terms and model structure in complex models, selecting less variables than competing approaches for realistic datasets.


翻译:根据包含所有现有变量的参考模型,预测预测推论用一个受限的预测替代其后半部,只包括所有变量的一个子集。我们扩大预测推论,以便能够在指数式家庭以外的模型中进行计算效率高的变量和结构选择。通过采用潜在的空间预测预测视角,我们可以:(1) 提出一个统一和一般的框架,以便在复杂的模型中进行变量选择,同时充分尊重原始模型结构;(2) 适当确定相关结构并保留原始模型中的后部不确定性;(3) 也为指数式大家庭中的非高加索模型提供更好的方法。我们通过在包括现实数据集在内的广泛环境中与流行变量选择方法进行彻底测试和比较,展示了我们方法的优异性。我们的结果显示,我们的方法成功地恢复了复杂模型中的相关术语和模型结构,选择的变量少于实际数据集的竞争性方法。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
28+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年10月31日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
相关论文
Arxiv
0+阅读 · 2021年10月31日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
3+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员