Backdoor attacks pose a significant threat to the security of federated learning systems. However, existing research primarily focuses on backdoor attacks and defenses within the generic FL scenario, where all clients collaborate to train a single global model. \citet{qin2023revisiting} conduct the first study of backdoor attacks in the personalized federated learning (pFL) scenario, where each client constructs a personalized model based on its local data. Notably, the study demonstrates that pFL methods with partial model-sharing can significantly boost robustness against backdoor attacks. In this paper, we whistleblow that pFL methods with partial model-sharing are still vulnerable to backdoor attacks in the absence of any defense. We propose three backdoor attack methods: BapFL, BapFL+, and Gen-BapFL, and we empirically demonstrate that they can effectively attack the pFL methods. Specifically, the key principle of BapFL lies in maintaining clean local parameters while implanting the backdoor into the global parameters. BapFL+ generalizes the attack success to benign clients by introducing Gaussian noise to the local parameters. Furthermore, we assume the collaboration of malicious clients and propose Gen-BapFL, which leverages meta-learning techniques to further enhances attack generalization. We evaluate our proposed attack methods against two classic pFL methods with partial model-sharing, FedPer and LG-FedAvg. Extensive experiments on four FL benchmark datasets demonstrate the effectiveness of our proposed attack methods. Additionally, we assess the defense efficacy of various defense strategies against our proposed attacks and find that Gradient Norm-Clipping is particularly effective. It is crucial to note that pFL method is not always secure in the presence of backdoor attacks, and we hope to inspire further research on attack and defense in pFL scenarios.
翻译:暂无翻译