Current 3D instance segmentation models generally use multi-stage methods to extract instance objects, including clustering, feature extraction, and post-processing processes. However, these multi-stage approaches rely on hyperparameter settings and hand-crafted processes, which restrict the inference speed of the model. In this paper, we propose a new 3D point cloud instance segmentation network, named OSIS. OSIS is a one-stage network, which directly segments instances from 3D point cloud data using neural network. To segment instances directly from the network, we propose an instance decoder, which decodes instance features from the network into instance segments. Our proposed OSIS realizes the end-to-end training by bipartite matching, therefore, our network does not require computationally expensive post-processing steps such as non maximum suppression (NMS) and clustering during inference. The results show that our network finally achieves excellent performance in the commonly used indoor scene instance segmentation dataset, and the inference speed of our network is only an average of 138ms per scene, which substantially exceeds the previous fastest method.
翻译:目前 3D 例分解模型通常使用多阶段方法来提取实例对象,包括集束、特征提取和后处理过程。 但是,这些多阶段方法依赖于超参数设置和手工制作的过程,这限制了模型的推断速度。 在本文中,我们提出一个新的 3D 点云分解网络,名为 OSIS 。 OSIS 是一个单阶段网络,它直接来自使用神经网络的 3D 点云分解数据。 对于来自网络的直接分解实例,我们建议一个实例解码器,它将实例特征从网络解码到实例段。我们提议的 OSIS 通过双面匹配实现端对端培训,因此我们的网络不需要计算昂贵的后处理步骤,如非最大抑制和在推断过程中的集聚。结果显示,我们的网络最终在常用的室内景分解数据集中取得了极好的性能,而我们的网络的推断速度仅为每场平均138米,大大超过以前的最快方法。</s>