Large Language Models (LLMs) have gained widespread popularity due to their ability to perform ad-hoc Natural Language Processing (NLP) tasks with a simple natural language prompt. Part of the appeal for LLMs is their approachability to the general public, including individuals with no prior technical experience in NLP techniques. However, natural language prompts can vary significantly in terms of their linguistic structure, context, and other semantics. Modifying one or more of these aspects can result in significant differences in task performance. Non-expert users may find it challenging to identify the changes needed to improve a prompt, especially when they lack domain-specific knowledge and lack appropriate feedback. To address this challenge, we present PromptAid, a visual analytics system designed to interactively create, refine, and test prompts through exploration, perturbation, testing, and iteration. PromptAid uses multiple, coordinated visualizations which allow users to improve prompts by using the three strategies: keyword perturbations, paraphrasing perturbations, and obtaining the best set of in-context few-shot examples. PromptAid was designed through an iterative prototyping process involving NLP experts and was evaluated through quantitative and qualitative assessments for LLMs. Our findings indicate that PromptAid helps users to iterate over prompt template alterations with less cognitive overhead, generate diverse prompts with help of recommendations, and analyze the performance of the generated prompts while surpassing existing state-of-the-art prompting interfaces in performance.
翻译:大型语言模型以它能够通过简单的自然语言提示执行临时自然语言处理任务的能力而广受欢迎。LLModel 的吸引力之一在于它对一般公众的易接近性,包括缺乏 NLP 技术方面的经验和领域特定知识的个人。然而,自然语言提示在语言结构、上下文和其他语义方面会有显著的差异,修改其中一个或多个方面会导致任务性能的显著差异。非专业用户可能很难识别提高提示所需的更改,尤其是当他们缺乏领域特定知识和适当的反馈时。为了解决这一挑战,我们提出了 PromptAid,这是一种可视化分析系统,旨在通过探索、扰动、测试和迭代,交互式地创建、精细化和测试提示。PromptAid 使用多个协调的可视化,允许用户使用三种策略改善提示:关键词扰动、释义扰动和获得最佳的上下文少样本示例集。PromptAid 经过 NLP 专家的迭代原型设计,并通过对 LLMs 进行定量和定性评估。我们的发现表明,PromptAid 帮助用户以较小的认知负荷迭代提示模板变化,通过推荐生成多样化的提示,并分析所生成提示的性能,同时超过现有的最先进提示界面的性能水平。