We propose a knowledge model for capturing dietary preferences and personal context to provide personalized dietary recommendations. We develop a knowledge model called the Personal Health Ontology, which is grounded in semantic technologies, and represents a patient's combined medical information, social determinants of health, and observations of daily living elicited from interviews with diabetic patients. We then generate a personal health knowledge graph that captures temporal patterns from synthetic food logs, annotated with concepts from the Personal Health Ontology. We further discuss how lifestyle guidelines grounded in semantic technologies can be reasoned with the generated personal health knowledge graph to provide appropriate dietary recommendations that satisfy the user's medical and other lifestyle needs.
翻译:我们提出了一个获取饮食偏好和个人背景的知识模型,以提供个性化饮食建议;我们开发了一个名为个人健康本体的知识模型,该模型以语义技术为基础,代表患者的综合医疗信息、健康的社会决定因素,以及从与糖尿病患者的访谈中得出的日常生活观察;然后我们制作了一个个人健康知识图,从合成食品原木中收集时间模式,并附有个人健康本体概念的说明;我们进一步讨论如何用生成的个人健康知识图为基于语义技术的生活方式指南提供合理性,以提供适当的饮食建议,满足用户的医疗和其他生活方式需求。