This article introduces new acceleration methods for fixed-point iterations. Extrapolations are computed using two or three mappings alternately and a new type of step length is proposed with good properties for nonlinear applications. The methods require no problem-specific adaptation and are especially efficient in high-dimensional contexts. Their computation uses few objective function evaluations, no matrix inversion and little extra memory. A convergence analysis is followed by eight applications including gradient descent acceleration for constrained and unconstrained optimization. Performances are on par with or better than competitive alternatives. The algorithm is available as the Julia package SpeedMapping.jl.
翻译:本条为固定点迭代引入了新的加速法。 外推法使用两到三个图解进行交替计算,并提出了具有非线性应用良好特性的新型步骤长度。 方法不需要针对具体问题的适应,在高维环境中特别有效。 计算方法很少使用客观功能评价,没有矩阵反转和少量额外内存。 趋同分析之后有八个应用, 包括因受限制和不受限制的优化而加速梯度下降。 性能与有竞争力的替代方法相同或更好。 算法作为Julia 包 SpeedMapping.jl 提供。