We study the problem of learning causal models from observational data through the lens of interpolation and its counterpart -- regularization. A large volume of recent theoretical, as well as empirical work, suggests that, in highly complex model classes, interpolating estimators can have good statistical generalization properties and can even be optimal for statistical learning. Motivated by an analogy between statistical and causal learning recently highlighted by Janzing (2019), we investigate whether interpolating estimators can also learn good causal models. To this end, we consider a simple linearly confounded model and derive precise asymptotics for the *causal risk* of the min-norm interpolator and ridge-regularized regressors in the high-dimensional regime. Under the principle of independent causal mechanisms, a standard assumption in causal learning, we find that interpolators cannot be optimal and causal learning requires stronger regularization than statistical learning. This resolves a recent conjecture in Janzing (2019). Beyond this assumption, we find a larger range of behavior that can be precisely characterized with a new measure of *confounding strength*. If the confounding strength is negative, causal learning requires weaker regularization than statistical learning, interpolators can be optimal, and the optimal regularization can even be negative. If the confounding strength is large, the optimal regularization is infinite, and learning from observational data is actively harmful.


翻译:我们研究从观察数据中学习因果模型的问题,从内推及其对应方的透镜中,从观察数据中学习因果模型 -- -- 正规化。大量最近的理论和实证工作表明,在高度复杂的模型类中,内推估计者具有良好的统计概括性,甚至可以最佳地进行统计学习。我们以Janzing(2019年)最近突出的统计和因果学习之间的类比为动力,我们调查乘数估计者是否也能学习良好的因果模型。为此,我们考虑一个简单的线性模糊模型,并得出一个精确的因果风险* 的随机风险* 。最近大量理论和实证性工作表明,在高度体系中,内推论者可以具有良好的统计概括性特征,根据独立因果机制的原则,一个标准假设,我们发现内推者不可能最佳和因果性学习比统计学更强。我们发现,除了这一假设外,我们发现更多的行为范围可以精确地描述成新度的 " 焦化 " 强度* " 的 " 的 " 内积 " 的 " 的 " 的 " 的 ",甚至 " 稳重 " 的 " 和 " 的 " 的 " 结构化 " 的 " 的 " 的 " 的 " 的 " 和 " 的 " 和 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 等值 " 等值 " 的 " 的 " 的 " 的 " 的 " 的 ",如果是 " 和 " 的 " 的 " 的 " 的 " 的 " 和 " 的 " 的 " 的 " 的 " 和 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 等值 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 的 " 和 " 的 " 的 " 的 " 的 " 等值 " 等值 " 的 " 等值 " 的 " 的 " 的 "

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员