Event cameras are novel bio-inspired sensors, which asynchronously capture pixel-level intensity changes in the form of "events". The innovative way they acquire data presents several advantages over standard devices, especially in poor lighting and high-speed motion conditions. However, the novelty of these sensors results in the lack of a large amount of training data capable of fully unlocking their potential. The most common approach implemented by researchers to address this issue is to leverage simulated event data. Yet, this approach comes with an open research question: how well simulated data generalize to real data? To answer this, we propose to exploit, in the event-based context, recent Domain Adaptation (DA) advances in traditional computer vision, showing that DA techniques applied to event data help reduce the sim-to-real gap. To this purpose, we propose a novel architecture, which we call Multi-View DA4E (MV-DA4E), that better exploits the peculiarities of frame-based event representations while also promoting domain invariant characteristics in features. Through extensive experiments, we prove the effectiveness of DA methods and MV-DA4E on N-Caltech101. Moreover, we validate their soundness in a real-world scenario through a cross-domain analysis on the popular RGB-D Object Dataset (ROD), which we extended to the event modality (RGB-E).


翻译:活动摄像机是新颖的由生物启发的传感器,它们以“活动”的形式不时捕捉像素级强度变化的像素级感应器。它们获取数据的创新方式比标准设备具有若干优势,特别是在光亮差和高速运动条件下。然而,这些传感器的新颖性导致缺乏大量能够充分释放其潜力的培训数据。研究人员为解决这一问题而采用的最常见方法是利用模拟事件数据。然而,这一方法带来了一个公开的研究问题:模拟数据对真实数据的概括性有多好?为了回答这个问题,我们提议在基于事件的情况下利用传统计算机视觉的最新多域适应(DA)进展,表明将DA技术应用于事件有助于缩小其真实差距。为此,我们提议了一个新结构,我们称之为多维维DA4E(MV-DA4E(MV-DA4E)(MV-DA4E) (MVD-D-DAD) (MV-D-DER-RGB-C-C-C-C-C-CRUF-C-C-C-CRGB-C-C-CRUD-C-IG-IG-C-C-IG-C-C-C-C-C-C-C-C-C-C-C-C-C-ILVLA-C-C-C-C-C-C-C-C-C-C-IF-IF-IF-C-C-C-C-IF-IF-IF-IF-IF-IF-C-C-C-C-C-C-C-C-IF-C-IF-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-IF-IF-IF-IF-IF-IF-IF-IF-IF-IF-IF-C-C-C-C-C-C-C-C-IF-IF-IF-IF-IF-IF-I-IF-IF-IF-IF-IF-IF-IF-IF-C-I-IF-IF-C-I-I-

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年10月28日
Arxiv
8+阅读 · 2020年8月30日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员