With the rapid emergence of graph representation learning, the construction of new large-scale datasets is necessary to distinguish model capabilities and accurately assess the strengths and weaknesses of each technique. By carefully analyzing existing graph databases, we identify 3 critical components important for advancing the field of graph representation learning: (1) large graphs, (2) many graphs, and (3) class diversity. To date, no single graph database offers all these desired properties. We introduce MalNet, the largest public graph database ever constructed, representing a large-scale ontology of malicious software function call graphs. MalNet contains over 1.2 million graphs, averaging over 15k nodes and 35k edges per graph, across a hierarchy of 47 types and 696 families. Compared to the popular REDDIT-12K database, MalNet offers 105x more graphs, 39x larger graphs on average, and 63x more classes. We provide a detailed analysis of MalNet, discussing its properties and provenance, along with the evaluation of state-of-the-art machine learning and graph neural network techniques. The unprecedented scale and diversity of MalNet offers exciting opportunities to advance the frontiers of graph representation learning--enabling new discoveries and research into imbalanced classification, explainability and the impact of class hardness. The database is publicly available at www.mal-net.org.


翻译:随着图表代表性学习的迅速出现,必须建造新的大型数据集,以区分模型能力,准确评估每种技术的优缺点。通过仔细分析现有的图表数据库,我们确定了3个对推进图表代表性学习领域至关重要的关键组成部分:(1)大图表,(2)许多图表,(3)类多样性。到目前为止,没有单一图表数据库提供所有这些期望的属性。我们引入了MalNet,这是有史以来最大的公共图表数据库,代表了恶意软件功能调用图的大规模本体学。MalNet包含120万多张图表,平均超过每图15千节节和35千分点。在47种和696个家庭中,我们通过仔细分析,确定了3个对推进图表代表性学习领域至关重要的关键组成部分:(1)大图,(2)许多图表,(3)类多样性。迄今为止,没有任何单一图表数据库提供所有这些理想属性。我们详细分析MalNet,讨论其属性和证明,同时评价最先进的机器学习和线性神经网络技术。MalNet的空前规模和多样性为推进图表代表性前沿提供了令人兴奋的机会。与REDNet数据库的可变性和可变性。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
53+阅读 · 2019年12月22日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
56+阅读 · 2021年5月3日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
35+阅读 · 2020年1月2日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
3+阅读 · 2018年8月27日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
53+阅读 · 2019年12月22日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Top
微信扫码咨询专知VIP会员