In order to alleviate the notorious mode collapse phenomenon in generative adversarial networks (GANs), we propose a novel training method of GANs in which certain fake samples are considered as real ones during the training process. This strategy can reduce the gradient value that generator receives in the region where gradient exploding happens. We show the process of an unbalanced generation and a vicious circle issue resulted from gradient exploding in practical training, which explains the instability of GANs. We also theoretically prove that gradient exploding can be alleviated by penalizing the difference between discriminator outputs and fake-as-real consideration for very close real and fake samples. Accordingly, Fake-As-Real GAN (FARGAN) is proposed with a more stable training process and a more faithful generated distribution. Experiments on different datasets verify our theoretical analysis.


翻译:为了缓解基因对抗网络中臭名昭著的模式崩溃现象,我们提议对基因对抗网络采用一种新的培训方法,在培训过程中将某些假样品视为真实样品;这一战略可以降低梯度爆炸发生地区生成器的梯度值;我们展示了不平衡的一代过程,以及实际培训中的梯度爆炸造成的恶性循环问题,这解释了基因对抗网络的不稳定性;我们还从理论上证明,通过惩罚歧视产物与假冒真实考虑之间的差别,可以减轻梯度爆炸。因此,提议采用更稳定的培训过程和更加忠实的分布法,对假冒的真真真假样品进行惩罚。关于不同数据集的实验证实了我们的理论分析。

1
下载
关闭预览

相关内容

误差梯度是神经网络训练过程中计算的方向和数量,用于以正确的方向和合适的量更新网络权重。 在深层网络或循环神经网络中,误差梯度可在更新中累积,变成非常大的梯度,然后导致网络权重的大幅更新,并因此使网络变得不稳定。在极端情况下,权重的值变得非常大,以至于溢出,导致NaN值。网络层之间的梯度(值大于 1.0)重复相乘导致的指数级增长会产生梯度爆炸。
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
GANs最新综述论文: 生成式对抗网络及其变种如何有用
专知会员服务
70+阅读 · 2019年10月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2019年10月31日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
12+阅读 · 2018年1月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
3+阅读 · 2019年10月31日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
12+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员