Counterfactual explanations provide a potentially significant solution to the Explainable AI (XAI) problem, but good, native counterfactuals have been shown to rarely occur in most datasets. Hence, the most popular methods generate synthetic counterfactuals using blind perturbation. However, such methods have several shortcomings: the resulting counterfactuals (i) may not be valid data-points (they often use features that do not naturally occur), (ii) may lack the sparsity of good counterfactuals (if they modify too many features), and (iii) may lack diversity (if the generated counterfactuals are minimal variants of one another). We describe a method designed to overcome these problems, one that adapts native counterfactuals in the original dataset, to generate sparse, diverse synthetic counterfactuals from naturally occurring features. A series of experiments are reported that systematically explore parametric variations of this novel method on common datasets to establish the conditions for optimal performance.
翻译:反事实解释为可解释的AI(XAI)问题提供了潜在的重要解决办法,但良好的当地反事实在大多数数据集中很少出现。因此,最受欢迎的方法利用盲目扰动产生合成反事实,但这类方法有几个缺点:由此产生的反事实(一)可能不是有效的数据点(它们经常使用并非自然发生的特征);(二)可能缺乏良好的反事实的孔隙(如果它们改变太多的特征),以及(三)可能缺乏多样性(如果产生的反事实是彼此之间最起码的变异)。我们描述了为克服这些问题而设计的一种方法,即在原始数据集中调整本地反事实,从自然发生的特征中产生稀少、多样的合成反事实。报告进行了一系列试验,系统地探讨关于共同数据集的这一新方法的参数变化,以便为最佳性能创造条件。