Counterfactual explanations provide a potentially significant solution to the Explainable AI (XAI) problem, but good, native counterfactuals have been shown to rarely occur in most datasets. Hence, the most popular methods generate synthetic counterfactuals using blind perturbation. However, such methods have several shortcomings: the resulting counterfactuals (i) may not be valid data-points (they often use features that do not naturally occur), (ii) may lack the sparsity of good counterfactuals (if they modify too many features), and (iii) may lack diversity (if the generated counterfactuals are minimal variants of one another). We describe a method designed to overcome these problems, one that adapts native counterfactuals in the original dataset, to generate sparse, diverse synthetic counterfactuals from naturally occurring features. A series of experiments are reported that systematically explore parametric variations of this novel method on common datasets to establish the conditions for optimal performance.


翻译:反事实解释为可解释的AI(XAI)问题提供了潜在的重要解决办法,但良好的当地反事实在大多数数据集中很少出现。因此,最受欢迎的方法利用盲目扰动产生合成反事实,但这类方法有几个缺点:由此产生的反事实(一)可能不是有效的数据点(它们经常使用并非自然发生的特征);(二)可能缺乏良好的反事实的孔隙(如果它们改变太多的特征),以及(三)可能缺乏多样性(如果产生的反事实是彼此之间最起码的变异)。我们描述了为克服这些问题而设计的一种方法,即在原始数据集中调整本地反事实,从自然发生的特征中产生稀少、多样的合成反事实。报告进行了一系列试验,系统地探讨关于共同数据集的这一新方法的参数变化,以便为最佳性能创造条件。

1
下载
关闭预览

相关内容

最新《可解释人工智能》概述,50页ppt
专知会员服务
131+阅读 · 2021年3月17日
自动化学科面临的挑战
专知会员服务
37+阅读 · 2020年12月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年12月8日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员