Multi-Agent Reinforcement Learning (MARL) has demonstrated significant success in training decentralised policies in a centralised manner by making use of value factorization methods. However, addressing surprise across spurious states and approximation bias remain open problems for multi-agent settings. Towards this goal, we introduce the Energy-based MIXer (EMIX), an algorithm which minimizes surprise utilizing the energy across agents. Our contributions are threefold; (1) EMIX introduces a novel surprise minimization technique across multiple agents in the case of multi-agent partially-observable settings. (2) EMIX highlights a practical use of energy functions in MARL with theoretical guarantees and experiment validations of the energy operator. Lastly, (3) EMIX extends Maxmin Q-learning for addressing overestimation bias across agents in MARL. In a study of challenging StarCraft II micromanagement scenarios, EMIX demonstrates consistent stable performance for multiagent surprise minimization. Moreover, our ablation study highlights the necessity of the energy-based scheme and the need for elimination of overestimation bias in MARL. Our implementation of EMIX can be found at karush17.github.io/emix-web/.
翻译:利用价值因素化方法,在集中培训权力下放政策方面取得了显著成功;然而,解决假想国家和近似偏差之间的意外现象仍然是多试剂环境的未决问题。为了实现这一目标,我们引入了以能源为基础的混合(EMIX)算法(EMIX),这一算法最大限度地减少利用各种物剂的能源的意外现象。我们的贡献有三重;(1)EMIX在多试剂部分可观测环境的情况下,在多种物剂中引入了一种令人惊讶的最小化技术。 (2)EMIX强调在能源操作者的理论保证和实验验证下,在MAL实际使用能源功能。(3)EMIX扩展了Maxmin 学习,以解决MAL中各种物剂的过高估计偏差问题。在一项对StarCraft II微观管理情景的挑战性研究中,EMIX展示了将多种物剂意外现象最小化的一贯稳定性表现。此外,我们的通货膨胀研究强调了能源计划的必要性和在MAL中消除过高估计偏差的必要性。我们在KARush17giub.web/ix中可以找到我们实施EMIX的情况。