Many discrete optimization problems amount to selecting a feasible set of edges of least weight. We consider in this paper the context of spatial graphs where the positions of the vertices are uncertain and belong to known uncertainty sets. The objective is to minimize the sum of the distances of the chosen set of edges for the worst positions of the vertices in their uncertainty sets. We first prove that these problems are $\cal NP$-hard even when the feasible sets consist either of all spanning trees or of all $s-t$ paths. Given this hardness, we propose an exact solution algorithm combining integer programming formulations with a cutting plane algorithm, identifying the cases where the separation problem can be solved efficiently. We also propose a conservative approximation and show its equivalence to the affine decision rule approximation in the context of Euclidean distances. We compare our algorithms to three deterministic reformulations on instances inspired by the scientific literature for the Steiner tree problem and a facility location problem.
翻译:许多离散的优化问题相当于选择一组最小重量的可行边缘。 我们在本文件中考虑空间图的背景, 其中脊椎的位置不确定, 属于已知的不确定性组。 目标是将所选择的边缘系列的距离与这些脊椎在不确定组中最差位置的距离之和最小化。 我们首先证明, 这些问题是坚硬的, 即使可行组由所有横贯树木或所有美元- 吨路径组成。 鉴于这种困难性, 我们提出一个精确的解决方案算法, 将整数编程配方与切除平面算法相结合, 确定分离问题可以有效解决的个案。 我们还建议一种保守的近似值, 并表明它与欧克利底距离范围内的折合性决定规则近似值的等值。 我们比较了我们的算法, 将其与由科学文献引发的施泰纳树问题和设施地点问题的三个案例的确定性重拟。