Correlation has a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion method that considers the similarity between the template and the search region. However, the correlation operation is a local linear matching process, losing semantic information and easily falling into a local optimum, which may be the bottleneck in designing high-accuracy tracking algorithms. In this work, to determine whether a better feature fusion method exists than correlation, a novel attention-based feature fusion network, inspired by the transformer, is presented. This network effectively combines the template and search region features using attention. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. First, we present a transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression head. Based on the TransT baseline, we further design a segmentation branch to generate an accurate mask. Finally, we propose a stronger version of TransT by extending TransT with a multi-template scheme and an IoU prediction head, named TransT-M. Experiments show that our TransT and TransT-M methods achieve promising results on seven popular datasets. Code and models are available at https://github.com/chenxin-dlut/TransT-M.


翻译:相关操作是一种简单的聚合方法,它考虑到模板和搜索区域之间的相似性。然而,相关操作是一个局部线性匹配过程,失去语义信息,容易跌入一个本地最佳,这可能是设计高精度跟踪算法的瓶颈。在这项工作中,为了确定是否存在比相关性更好的特性融合方法,介绍了一种由变压器启发的新颖的基于关注的聚合功能网络。这个网络有效地将模板和搜索区域特征结合到关注中。具体地说,拟议方法包括一个基于自我注意的自定义字符串联增强模块和一个基于交叉注意的跨功能增强模块。首先,我们提出一个基于类似Siameese的特征提取主干线的变异器跟踪(名为TransT)方法,设计基于关注的聚合机制,以及分类和回归头部。基于 TransTLT 基线,我们进一步设计了一个用于生成准确的掩码和搜索区域功能的分区分支。最后,我们提议了一个基于T Transal-M Transal-M 的变换M-Traeal-TravelyM-TravelmentM-SyM-Creal-Creal Sy-Sy-Sil-Sy-Sil-Sy-Sy-T 显示一个更强有力的,在I.

0
下载
关闭预览

相关内容

【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
17+阅读 · 2021年3月29日
VIP会员
相关VIP内容
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
Top
微信扫码咨询专知VIP会员