This paper presents a matrix-free multigrid method for solving the Stokes problem, discretized using $H^{\text{div}}$-conforming discontinuous Galerkin methods. We employ a Schur complement method combined with the fast diagonalization method for the efficient evaluation of the local solver within the multiplicative Schwarz smoother. This approach operates directly on both the velocity and pressure spaces, eliminating the need for a global Schur complement approximation. By leveraging the tensor product structure of Raviart-Thomas elements and an optimized, conflict-free shared memory access pattern, the matrix-free operator evaluation demonstrates excellent performance numbers, reaching over one billion degrees of freedom per second on a single NVIDIA A100 GPU. Numerical results indicate efficiency comparable to that of the three-dimensional Poisson problem.
翻译:暂无翻译