Two types of states are widely used in quantum mechanics, namely (deterministic-coefficient) pure states and statistical mixtures. A density operator can be associated with each of them. We here address a third type of states, that we previously introduced in a more restricted framework. These states generalize pure ones by replacing each of their deterministic ket coefficients by a random variable. We therefore call them Random-Coefficient Pure States, or RCPS. We analyze their properties and their relationships with both types of usual states. We show that RCPS contain much richer information than the density operator and mean of observables that we associate with them. This occurs because the latter operator only exploits the second-order statistics of the random state coefficients, whereas their higher-order statistics contain additional information. That information can be accessed in practice with the multiple-preparation procedure that we propose for RCPS, by using second-order and higher-order statistics of associated random probabilities of measurement outcomes. Exploiting these higher-order statistics opens the way to a very general approach for performing advanced quantum information processing tasks. We illustrate the relevance of this approach with a generic example, dealing with the estimation of parameters of a quantum process and thus related to quantum process tomography. This parameter estimation is performed in the non-blind (i.e. supervised) or blind (i.e. unsupervised) mode. We show that this problem cannot be solved by using only the density operator \rho of an RCPS and the associated mean value Tr(\rho A) of the operator A that corresponds to the considered physical quantity. We succeed in solving this problem by exploiting a fourth-order statistical parameter of state coefficients, in addition to second-order statistics. Numerical tests validate this result.


翻译:两种类型的国家被广泛用于量子力学, 即( 确定性- 节能) 纯状态和统计混合物。 密度运算器可以与其中每一种相联。 我们在这里讨论的是第三种类型的国家, 我们先前在更限制性的框架内引入的。 这些状态通过随机变数来取代其中每一种确定性篮子系数, 将纯质系数普遍化。 因此我们称它们为随机- 节能纯质国家, 或者 RCPS 。 我们分析它们与这两种常见状态的属性和关系。 我们展示了RCPS 包含比密度运算操作器和我们与之关联的观测结果平均值更丰富得多的信息。 这是因为, 后者仅利用随机状态统计的第二等级和更高等级数据, 而后者仅利用第二级统计的第二级统计结果, 我们无法将这一方法与高级量值的第二级统计结果相匹配。 我们用一个通用的参数来说明这一方法的相关性, 并且用一个通用的参数来解读运行的货币运算结果。 我们用一个通用的参数来说明这个方法的直径直径直线度运算法 。 。 通过一个直径直径直压的计算结果, 我们用一个直径直径直径直路的计算的结果, 向一个直径直路的直路的计算结果, 。 我们用一个直路路路的直路的直路的直路路的直路的直路的直路的直路的直路的直路的计算法, 。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
60+阅读 · 2020年3月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月7日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
60+阅读 · 2020年3月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员