We analyze the spatial structure of asymptotics of a solution to a singularly perturbed system of mass transfer equations. The leading term of the asymptotics is described by a parabolic equation with possibly degenerate spatial part. We prove a theorem that establishes a relationship between the degree of degeneracy and the numbers of equations in the system and spatial variables in some particular cases. The work hardly depends on the calculation of the eigenvalues of matrices that determine the spatial structure of the asymptotics by the means of computer algebra system Wolfram Mathematica. We put forward a hypothesis on the existence of the found connection for an arbitrary number of equations and spatial variables.
翻译:我们分析一个单一扰动的大规模转移方程式系统解决方案的无源空间结构。无源方程式的主要术语是由一个可能退化的空间部分的抛物线方程式描述的。我们证明一个理论在系统变异程度和等式数量以及某些特定情况下的空间变量之间建立了关系。工作几乎不取决于矩阵的双元值的计算,这些矩阵通过计算机代数系统Wolfram Mathematica确定无源方程式的空间结构。我们提出了关于所发现的任意数量方程式和空间变量的关联存在的假设。