Channel charting (CC) is an unsupervised learning method allowing to locate users relative to each other without reference. From a broader perspective, it can be viewed as a way to discover a low-dimensional latent space charting the channel manifold. In this paper, this latent modeling vision is leveraged together with a recently proposed location-based beamforming (LBB) method to show that channel charting can be used for mapping channels in space or frequency. Combining CC and LBB yields a neural network resembling an autoencoder. The proposed method is empirically assessed on a channel mapping task whose objective is to predict downlink channels from uplink channels.
翻译:频道图示( CC) 是一种无人监督的学习方法, 可以让用户彼此相对而无需参考。 从更广的角度来看, 可以把它看作是发现低维潜潜层空间图示频道多层的一条途径。 在本文中, 这种潜在的模型构想与最近提出的基于位置的波束成形法( LBB) 一起被利用, 以显示频道图示可以用于空间或频率的通道。 将 CC 和 LBB 合并产生一个神经网络, 与自动编码器相仿。 所提议方法是在频道图示任务上根据经验评估的, 目的是预测上链接频道的下行通道 。