Bike sharing demand is increasing in large cities worldwide. The proper functioning of bike-sharing systems is, nevertheless, dependent on a balanced geographical distribution of bicycles throughout a day. In this context, understanding the spatiotemporal distribution of check-ins and check-outs is key for station balancing and bike relocation initiatives. Still, recent contributions from deep learning and distance-based predictors show limited success on forecasting bike sharing demand. This consistent observation is hypothesized to be driven by: i) the strong dependence between demand and the meteorological and situational context of stations; and ii) the absence of spatial awareness as most predictors are unable to model the effects of high-low station load on nearby stations. This work proposes a comprehensive set of new principles to incorporate both historical and prospective sources of spatial, meteorological, situational and calendrical context in predictive models of station demand. To this end, a new recurrent neural network layering composed by serial long-short term memory (LSTM) components is proposed with two major contributions: i) the feeding of multivariate time series masks produced from historical context data at the input layer, and ii) the time-dependent regularization of the forecasted time series using prospective context data. This work further assesses the impact of incorporating different sources of context, showing the relevance of the proposed principles for the community even though not all improvements from the context-aware predictors yield statistical significance.


翻译:全世界大城市的自行车共享需求正在增加,但自行车共享系统的适当运行取决于自行车每天的均衡地理分布。在这方面,了解报到和报出对车站平衡和自行车搬迁举措至关重要。不过,深层学习和远程预测器最近的贡献表明,预测自行车共享需求的成功程度有限。这种一致观察的动力是:一)需求与气象和情境之间高度依赖各台站;二)空间意识不足,因为大多数预测器无法模拟高低站载荷对附近台站的影响。这项工作提出了一套全面的新原则,将空间、气象、形势和卡路里背景的历史和潜在来源纳入台站需求的预测模型。为此,提出了一个新的经常性神经网络结构,由连续的短期记忆(LSTM)组成,其中有两个主要贡献:(一) 输入从历史背景数据生成的多变时间系列面具,无法模拟附近台站高空载量。这项工作提出了一套全面的新原则,将空间、气象、形势和卡路里背景的历史来源纳入空间、气象、情景背景的预测中,尽管对预测有不同程度的预测,但用预测的预测数据来源显示未来价值。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2018年4月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Prediction of Hereditary Cancers Using Neural Networks
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2018年4月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员