Graph neural networks (GNNs) have achieved impressive performance when testing and training graph data come from identical distribution. However, existing GNNs lack out-of-distribution generalization abilities so that their performance substantially degrades when there exist distribution shifts between testing and training graph data. To solve this problem, in this work, we propose an out-of-distribution generalized graph neural network (OOD-GNN) for achieving satisfactory performance on unseen testing graphs that have different distributions with training graphs. Our proposed OOD-GNN employs a novel nonlinear graph representation decorrelation method utilizing random Fourier features, which encourages the model to eliminate the statistical dependence between relevant and irrelevant graph representations through iteratively optimizing the sample graph weights and graph encoder. We further design a global weight estimator to learn weights for training graphs such that variables in graph representations are forced to be independent. The learned weights help the graph encoder to get rid of spurious correlations and, in turn, concentrate more on the true connection between learned discriminative graph representations and their ground-truth labels. We conduct extensive experiments to validate the out-of-distribution generalization abilities on two synthetic and 12 real-world datasets with distribution shifts. The results demonstrate that our proposed OOD-GNN significantly outperforms state-of-the-art baselines.


翻译:测试和培训图解数据来自相同的分布,而测试和培训图解网络(GNNs)在测试和培训图解数据来自相同的分布时取得了令人印象深刻的性能;然而,现有的GNNs缺乏超出分布的概括性能力,因此,当测试与培训图解数据之间存在分布变化时,其性能会大大降低。为了解决这个问题,我们在此工作中建议建立一个分布式通用图解神经网络(OOOD-GNN),以便在具有不同分布式的培训图解的不可见的测试图中取得令人满意的性能。我们提议的OOD-GNN用随机的Fourier特征,采用新的非线性图解表解化方法,鼓励模型通过迭接优化样本图示重量和图形图解编码器,消除相关和不相关的图表表解之间的统计依赖性。我们进一步设计一个全球加权测量器,用于学习培训图解中变量的重量,从而迫使图解图解中的各种变量是独立的。我们所学的权重帮助图解器摆脱了虚假的关联,而反过来,更注重于所学的辨性图解图解图解图解图解图解图解的图解图解图解和地面图解标签标签之间的真实联系。我们进行广泛的图解式图解的图解的图解的图解的图解的图理学的图理学的图理学的图理学上,我们所拟的图理学的图理学的图理学的图理学的图理学的图理学的图理学——我们进行了广泛的实验,以验证。我们所拟的图理学的图理学的图理学的图理学的图理学的图理学的图理学的图理——我们用的图理学——我们用的图理学的图理学的图理学的图理——我们用的图理学—— 12号——我们与12的模型的模型的模型的模型的图理学的模型的图理学——我们用,我们用的模型的模型的模型的模型式的模型的图理学上的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型造造的模型的模型的模型的模型的模型的模型,以验证的模型的

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
图神经网络(GNN)结构化数据分析
专知
5+阅读 · 2020年3月22日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
图神经网络(GNN)结构化数据分析
专知
5+阅读 · 2020年3月22日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员