The Kaczmarz method (KZ) and its variants, which are types of stochastic gradient descent (SGD) methods, have been extensively studied due to their simplicity and efficiency in solving linear equation systems. The iterative thresholding (IHT) method has gained popularity in various research fields, including compressed sensing or sparse linear regression, machine learning with additional structure, and optimization with nonconvex constraints. Recently, a hybrid method called Kaczmarz-based IHT (KZIHT) has been proposed, combining the benefits of both approaches, but its theoretical guarantees are missing. In this paper, we provide the first theoretical convergence guarantees for KZIHT by showing that it converges linearly to the solution of a system with sparsity constraints up to optimal statistical bias when the reshuffling data sampling scheme is used. We also propose the Kaczmarz with periodic thresholding (KZPT) method, which generalizes KZIHT by applying the thresholding operation for every certain number of KZ iterations and by employing two different types of step sizes. We establish a linear convergence guarantee for KZPT for randomly subsampled bounded orthonormal systems (BOS) and mean-zero isotropic sub-Gaussian random matrices, which are most commonly used models in compressed sensing, dimension reduction, matrix sketching, and many inverse problems in neural networks. Our analysis shows that KZPT with an optimal thresholding period outperforms KZIHT. To support our theory, we include several numerical experiments.


翻译:Kaczmarz方法(KZ)及其变体是随机梯度下降(SGD)方法的一种,由于其在解线性方程组方面的简单性和效率而得到广泛研究。迭代阈值方法(IHT)在各个研究领域获得了普及,包括压缩感知或稀疏线性回归、带有附加结构的机器学习和具有非凸约束的优化。最近,提出了一种称为基于Kaczmarz的IHT(KZIHT)的混合方法,将两种方法的优点结合起来,但其理论保证尚缺失。本文通过展示在使用重排数据采样方案时,KZIHT向具有稀疏约束的系统的解线性收敛到最优统计偏差水平中,为KZIHT提供了首个理论收敛保证。我们还提出了基于周期阈值方法的Kaczmarz(KZPT)方法,该方法通过为每个KZ迭代应用阈值操作和采用两种不同类型的步长来推广KZIHT。我们为随机子采样的有界正交系统(BOS)和均值为零的各向同性亚高斯随机矩阵建立了KZPT的线性收敛保证,这些模型通常用于压缩感知、降维、矩阵草图以及神经网络中的许多反问题。我们的分析表明,具有最优阈值周期的KZPT优于KZIHT。为了支持理论,我们还包括了几个数值实验。

0
下载
关闭预览

相关内容

【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
66+阅读 · 2022年9月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月5日
VIP会员
相关VIP内容
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
66+阅读 · 2022年9月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员