A natural goal in multiagent learning besides finding equilibria is to learn rationalizable behavior, where players learn to avoid iteratively dominated actions. However, even in the basic setting of multiplayer general-sum games, existing algorithms require a number of samples exponential in the number of players to learn rationalizable equilibria under bandit feedback. This paper develops the first line of efficient algorithms for learning rationalizable Coarse Correlated Equilibria (CCE) and Correlated Equilibria (CE) whose sample complexities are polynomial in all problem parameters including the number of players. To achieve this result, we also develop a new efficient algorithm for the simpler task of finding one rationalizable action profile (not necessarily an equilibrium), whose sample complexity substantially improves over the best existing results of Wu et al. (2021). Our algorithms incorporate several novel techniques to guarantee rationalizability and no (swap-)regret simultaneously, including a correlated exploration scheme and adaptive learning rates, which may be of independent interest. We complement our results with a sample complexity lower bound showing the sharpness of our guarantees.


翻译:多试剂学习的自然目标,除了找到平衡之外,还包括学习可合理化的行为,让玩家学会避免反复支配的行为。然而,即使在多玩家普通游戏和游戏的基本设置中,现有的算法也需要一些玩家数目的样本指数,以便根据土匪反馈学习可合理化的平衡。本文开发了第一行高效算法,用于学习可合理化的Coarse Corcontal Equilibria(CCCE)和Corcontern Equilibria(CE),其样本复杂性在所有问题参数(包括玩家数目)中是多元的。为了实现这一结果,我们还开发了一种新的高效算法,用于更简单的任务,即找到一个可合理化的行动特征(不一定是均衡的),其样本复杂性大大高于Wu等人(2021年)的现有最佳结果。我们的算法包含若干新技术,以保证合理化,而没有(swap)regret,包括一个相关的勘探计划和适应性学习率,这可能具有独立的兴趣。我们用一个比较复杂度较低的样本来补充我们的结果,显示我们的保证的精确度。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年12月2日
Arxiv
0+阅读 · 2022年12月1日
Arxiv
82+阅读 · 2022年7月16日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员