For partial, nondeterministic, finite state machines, a new conformance relation called strong reduction is presented. It complements other existing conformance relations in the sense that the new relation is well-suited for model-based testing of systems whose inputs are enabled or disabled, depending on the actual system state. Examples of such systems are graphical user interfaces and systems with interfaces that can be enabled or disabled in a mechanical way. We present a new test generation algorithm producing complete test suites for strong reduction. The suites are executed according to the grey-box testing paradigm: it is assumed that the state-dependent sets of enabled inputs can be identified during test execution, while the implementation states remain hidden, as in black-box testing. It is shown that this grey-box information is exploited by the generation algorithm in such a way that the resulting best-case test suite size is only linear in the state space size of the reference model. Moreover, examples show that this may lead to significant reductions of test suite size in comparison to true black-box testing for strong reduction.
翻译:对于局部的、非确定性的、有限的国有机器,提供了一种称为大幅减缩的新的合规关系。它补充了其他现有的合规关系,因为根据系统的实际状态,新的关系完全适合对投入被启用或禁用的系统进行基于模型的测试。这些系统的例子有图形用户界面和具有界面的系统,这些界面可以机械地被启用或禁用。我们提出了一个新的测试生成算法,生成完整的测试套件,以进行大幅减缩。套件是按照灰盒测试模式执行的:假设在试验执行期间可以识别依靠状态的成套启用输入,而实施状态则保持隐藏状态,就像黑盒测试一样。它表明,这种灰盒信息被生成算法所利用的方式是,由此产生的最佳测试套件大小在参考模型的状态空间大小中只是线性。此外,示例表明,这可能导致测试套件与真正的黑盒测试相比,与真正的大幅减缩试验相比,测试套件的尺寸显著缩小。