Randomly pivoted Cholesky (RPCholesky) is a natural algorithm for computing a rank-k approximation of an N x N positive semidefinite (psd) matrix. RPCholesky can be implemented with just a few lines of code. It requires only (k+1)N entry evaluations and O(k^2 N) additional arithmetic operations. This paper offers the first serious investigation of its experimental and theoretical behavior. Empirically, RPCholesky matches or improves on the performance of alternative algorithms for low-rank psd approximation. Furthermore, RPCholesky provably achieves near-optimal approximation guarantees. The simplicity, effectiveness, and robustness of this algorithm strongly support its use in scientific computing and machine learning applications.
翻译:RPCholesky( RPCholesky) 只需几行代码即可实施。 它只需要( k+1N) 输入评估和 O( k ⁇ 2N) 额外的算术操作。 本文首次对其实验和理论行为进行了认真调查。 RPCholesky (RPCholesky) 是计算Nx Nx正正半无ite( psd) 矩阵的一公里近似值的自然算法。 此外, RPCholesky 还可以实现近乎最佳近似近似保证。 这个算法的简单性、 有效性和稳健性有力地支持其在科学计算和机器学习应用程序中的应用 。