We consider the problem of forecasting multiple values of the future of a vector time series, using some past values. This problem, and related ones such as one-step-ahead prediction, have a very long history, and there are a number of well-known methods for it, including vector auto-regressive models, state-space methods, multi-task regression, and others. Our focus is on low rank forecasters, which break forecasting up into two steps: estimating a vector that can be interpreted as a latent state, given the past, and then estimating the future values of the time series, given the latent state estimate. We introduce the concept of forecast consistency, which means that the estimates of the same value made at different times are consistent. We formulate the forecasting problem in general form, and focus on linear forecasters, for which we propose a formulation that can be solved via convex optimization. We describe a number of extensions and variations, including nonlinear forecasters, data weighting, the inclusion of auxiliary data, and additional objective terms. We illustrate our methods with several examples.
翻译:我们考虑的是利用过去的某些数值预测矢量时间序列未来多重值的问题。 这个问题,以及一步前预测等相关因素,有着很长的历史,而且有许多众所周知的方法,包括矢量自动递减模型、状态-空间方法、多任务回归等。 我们的重点是低级预报者,这些预测者将预测分为两个步骤:估计过去可以被解释为潜伏状态的矢量,然后根据潜在状态估计估计时间序列的未来值。我们引入了预测一致性的概念,这意味着在不同时期作出的相同价值的估计数是一致的。我们以一般形式提出预测问题,并侧重于线性预报者,为此我们提出一种可以通过convex优化解决的公式。我们描述了一些扩展和变异,包括非线性预报者、数据加权、纳入辅助数据以及额外的客观术语。我们用几个例子来说明我们的方法。