Federated learning (FL) is the most practical multi-source learning method for electronic healthcare records (EHR). Despite its guarantee of privacy protection, the wide application of FL is restricted by two large challenges: the heterogeneous EHR systems, and the non-i.i.d. data characteristic. A recent research proposed a framework that unifies heterogeneous EHRs, named UniHPF. We attempt to address both the challenges simultaneously by combining UniHPF and FL. Our study is the first approach to unify heterogeneous EHRs into a single FL framework. This combination provides an average of 3.4% performance gain compared to local learning. We believe that our framework is practically applicable in the real-world FL.
翻译:联邦学习(FL)是电子保健记录中最实用的多来源学习方法(FL),尽管它保证了隐私保护,但FL的广泛应用受到两大挑战的限制:不同的EHR系统和非i.i.d.数据特征。最近的一项研究提出了一个统一不同EHR(统称UUHPF)的框架。我们试图通过将UNIHPF和FL结合起来来同时应对这两个挑战。我们的研究是将不同EHR合并为单一的FL框架的第一种方法。这种结合提供了与当地学习相比平均3.4%的绩效收益。我们认为,我们的框架实际上适用于现实世界FL。