This paper is concerned with a nonparametric regression problem in which the independence assumption of the input variables and the residuals is no longer valid. Using existing model selection methods, like cross validation, the presence of temporal autocorrelation in the input variables and the error terms leads to model overfitting. This phenomenon is referred to as temporal overfitting, which causes loss of performance while predicting responses for a time domain different from the training time domain. We propose a new method to tackle the temporal overfitting problem. Our nonparametric model is partitioned into two parts -- a time-invariant component and a time-varying component, each of which is modeled through a Gaussian process regression. The key in our inference is a thinning-based strategy, an idea borrowed from Markov chain Monte Carlo sampling, to estimate the two components, respectively. Our specific application in this paper targets the power curve modeling in wind energy. In our numerical studies, we compare extensively our proposed method with both existing power curve models and available ideas for handling temporal overfitting. Our approach yields significant improvement in prediction both in and outside the time domain covered by the training data.
翻译:本文涉及一个非参数回归问题, 输入变量和剩余值的独立假设不再有效。 使用现有的模型选择方法, 如交叉验证, 输入变量和错误术语中存在时间自动关系, 导致模型超配。 这一现象被称为时间超配, 造成性能损失, 同时预测一个不同于培训时间域的时间域的响应。 我们提出了解决时间超配问题的新方法。 我们的非参数模型被分割成两个部分 -- -- 一个时间变异部分和一个时间变异部分, 每一个部分都通过高斯进程回归模型。 我们的推论中的关键在于一种基于稀释的战略, 一种从马尔科夫连锁蒙特卡洛取样中借用的想法, 来分别估计这两个组成部分。 我们本文的具体应用针对风能的电曲线模型。 在我们的数字研究中, 我们广泛比较了我们提出的方法, 以及现有的电曲线模型和处理时间超配料的可用想法。 我们的方法在培训数据覆盖的时间域内外的预测都有很大改进。