App usage prediction is important for smartphone system optimization to enhance user experience. Existing modeling approaches utilize historical app usage logs along with a wide range of semantic information to predict the app usage; however, they are only effective in certain scenarios and cannot be generalized across different situations. This paper address this problem by developing a model called Contextual and Semantic Embedding model for App Usage Prediction (CoSEM) for app usage prediction that leverages integration of 1) semantic information embedding and 2) contextual information embedding based on historical app usage of individuals. Extensive experiments show that the combination of semantic information and history app usage information enables our model to outperform the baselines on three real-world datasets, achieving an MRR score over 0.55,0.57,0.86 and Hit rate scores of more than 0.71, 0.75, and 0.95, respectively.
翻译:现有模型方法利用历史应用程序使用记录以及广泛的语义信息来预测应用程序的使用;然而,它们仅在某些情景中有效,不能在不同的情形下普遍使用。本文通过开发一个名为“应用使用预测(COSEM)背景和语义嵌入模型”的模型来解决这一问题,该模型用于应用使用预测,该模型利用综合了1个语义信息嵌入和2个基于个人历史应用程序使用的背景信息。 广泛的实验表明,语义信息与历史应用程序使用信息相结合,使得我们的模型能够超越三个真实世界数据集的基线,分别达到0.55、0.57、0.86和0.95以上速率分和0.75。