Workflow decision making is critical to performing many practical workflow applications. Scheduling in edge-cloud environments can address the high complexity problem of workflow applications, while decreasing the data transmission delay between the cloud and end devices. However, because of the heterogeneous resources in edge-cloud environments and the complicated data dependencies among the tasks in a workflow, significant challenges for workflow scheduling remain, including the selection of an optimal tasks-servers solution from the possible numerous combinations. The existing studies have been mainly done subject to rigorous conditions without fluctuations, ignoring the fact that workflow scheduling is typically present in uncertain environments. In this study, we focus on reducing the execution cost of workflow applications mainly caused by task computation and data transmission, while satisfying the workflow deadline in uncertain edge-cloud environments. The Triangular Fuzzy Numbers (TFNs) are adopted to represent the task processing time and data transferring time. A cost-driven fuzzy scheduling strategy based on an Adaptive Discrete Particle Swarm Optimization (ADPSO) algorithm is proposed, which employs the operators of Genetic Algorithm (GA). This strategy introduces the randomly two-point crossover operator, neighborhood mutation operator, and adaptive multipoint mutation operator of GA to effectively avoid converging on local optima. The experimental results show that our strategy can effectively reduce the workflow execution cost in uncertain edge-cloud environments, compared with other benchmark solutions.
翻译:工作流程决策对于执行许多实用工作流程应用程序至关重要。 在边缘悬崖环境中安排工作可以解决工作流程应用程序的高度复杂问题,同时减少云层和终端设备之间的数据传输延迟。然而,由于在边缘悬崖环境中资源不一,工作流程任务之间数据依赖性复杂,工作流程时间安排仍面临重大挑战,包括从可能的众多组合中选择最佳任务-服务器解决方案。现有研究主要在不波动的严格条件下完成,忽视工作流程列表通常存在于不确定环境中的事实。在本研究中,我们侧重于降低工作流程应用程序的执行成本,主要是任务计算和数据传输造成的,同时在不确定的边缘悬崖环境中满足工作流程最后期限。采用三角模糊数字代表任务处理时间和数据传输时间。基于适应性粒子Swarm Optimizion (ADPSO) 的逻辑化战略,利用遗传 Algorithm 解决方案的操作者(GAGA),这一战略有效地引入了不定期的、不固定的、不固定的、不固定的、不固定的、不固定的、不固定的、不固定的、不固定的、不固定的操作者在替代性的操作者之间的战略。这个战略可以有效地通过GAAA的、可随机的跨的操作者展示的操作者展示的、可有效地展示的、可操作者在GAAAAA的、可操作者之间的实验性实验性实验性实验性试验性试验环境上展示性、可有效地展示的跨的双重的、可展示性试验操作者可操作者可操作者可操作者可有效地展示其他的、可操作者可操作者可操作者可有效展示其他的、可操作者可操作性试验性地展示其他的、可操作性试验性试验性试验性试验性环境。