Recent studies show that graph processing systems on a single machine can achieve competitive performance compared with cluster-based graph processing systems. In this paper, we present NXgraph, an efficient graph processing system on a single machine. With the abstraction of vertex intervals and edge sub-shards, we propose the Destination-Sorted Sub-Shard (DSSS) structure to store a graph. By dividing vertices and edges into intervals and sub-shards, NXgraph ensures graph data access locality and enables fine-grained scheduling. By sorting edges within each sub-shard according to their destination vertices, NXgraph reduces write conflicts among different threads and achieves a high degree of parallelism. Then, three updating strategies, i.e., Single-Phase Update (SPU), Double-Phase Update (DPU), and Mixed-Phase Update (MPU), are proposed in this paper. NXgraph can adaptively choose the fastest strategy for different graph problems according to the graph size and the available memory resources to fully utilize the memory space and reduce the amount of data transfer. All these three strategies exploit streamlined disk access pattern. Extensive experiments on three real-world graphs and five synthetic graphs show that NXgraph can outperform GraphChi, TurboGraph, VENUS, and GridGraph in various situations. Moreover, NXgraph, running on a single commodity PC, can finish an iteration of PageRank on the Twitter graph with 1.5 billion edges in 2.05 seconds; while PowerGraph, a distributed graph processing system, needs 3.6s to finish the same task.


翻译:最近的研究表明, 一台机器上的图形处理系统能够实现与基于集束的图形处理系统相比的竞争性性能。 在本文中, 我们展示了NXgraph, 这是一种在一台机器上高效的图形处理系统。 随着顶端间隔和边缘子碎片的抽象化, 我们提议了目的地 Sort- Shard (DSS) 结构以存储一个图形。 通过将脊椎和边缘分解成间距和子碎片, NXgraph 可以确保图形数据访问地点, 并能够进行细微的排列。 通过根据每个子硬体的目的地的顶点对边缘进行排序, NXgraph 将一个高效的图形处理系统进行写法冲突, 并实现高度的平行化。 然后, 我们提出三个更新战略, 即单阶段更新的子系统更新, 双阶段更新(DPU) 和混合阶段更新(MPU) 。 NXgraphraph 可以根据图表大小和现有存储资源, 来充分利用存储空间, 并减少数据传输的数量。 所有这些战略, NX 都利用了Slifrial- Streal Streal lifal lifal lifal lifal 工作, 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
15+阅读 · 2019年6月25日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
相关论文
Top
微信扫码咨询专知VIP会员