This paper proposes a simple method for controllable text generation based on weighting logits produced, namely CAIF sampling. Using an arbitrary third-party text classifier, we adjust a small part of a language model's logits and guide text generation towards or away from classifier prediction. We show that the proposed method significantly outperforms recent PPLM, GeDi, and DExperts on PPL and sentiment accuracy based on the external classifier of generated texts. A the same time, it is also easier to implement and tune, and has significantly fewer restrictions and requirements.
翻译:本文提出了一个基于所制作的加权日志的可控文本生成简单方法,即CAIF抽样。我们使用任意的第三方文本分类器,对语言模型的一小部分登录器进行调整,并指导文本生成与分类器预测相近。我们表明,拟议方法大大优于最近的PPLM、Gedi和DExpert on PPL和基于生成文本外部分类器的情绪准确性。同时,执行和调整也比较容易,限制和要求也少得多。