We generalize the transformations and duality found in incommensurate 2D systems between real space, configuration space, momentum space, and reciprocal space to study electronic observables of incommensurate bilayers in the tight-binding framework using a wide class of applicable Hamiltonians. We then apply this generalization to obtain the effects of mechanical relaxation on nearly aligned materials in momentum space, which produce in-plane incommensurate scattering. The relaxation scattering is long-ranged in this case, which likewise changes the momentum space numerical scheme convergence rate. We study this convergence theoretically, and perform a numerical study on twisted bilayer graphene at small angles with mechanical relaxation.
翻译:我们在实际空间、配置空间、动力空间和对等空间之间不相容的2D系统中发现了变异和双重性,以便利用广泛类别的可适用的汉密尔顿人,在紧凑的框架内研究对相配的双层人的电子观测结果。然后我们运用这种变异和双重性来获取机械放松对动力空间中几乎对齐的材料的影响,这种材料在动力空间中产生相配的相容散射。在这种情况下,放松散射是远距离的,这同样改变了动力空间数值组合的趋同率。我们从理论上研究这种趋同,并对机械放松的小角度的扭曲双层石墨进行数字研究。