We propose a staggered mesh method for correlation energy calculations of periodic systems under the random phase approximation (RPA), which generalizes the recently developed staggered mesh method for periodic second order M{\o}ller-Plesset perturbation theory (MP2) calculations [Xing, Li, Lin, JCTC 2021]. Compared to standard RPA calculations, the staggered mesh method introduces negligible additional computational cost. It avoids a significant portion of the finite-size error, and can be asymptotically advantageous for quasi-1D systems and certain quasi-2D and 3D systems with high symmetries. We demonstrate the applicability of the method using two different formalisms: the direct ring coupled cluster doubles (drCCD) theory, and the adiabatic-connection (AC) fluctuation-dissipation theory. In the drCCD formalism, the second order screened exchange (SOSEX) correction can also be readily obtained using the staggered mesh method. In the AC formalism, the staggered mesh method naturally avoids the need of performing "head/wing" corrections to the dielectric operator. The effectiveness of the staggered mesh method for insulating systems is theoretically justified by investigating the finite-size error of each individual perturbative term in the RPA correlation energy, expanded as an infinite series of terms associated with ring diagrams. As a side contribution, our analysis provides a proof that the finite-size error of each perturbative term of standard RPA and SOSEX calculations scales as $\mathcal{O}(N_{\mathbf{k}}^{-1})$, where $N_{\mathbf{k}}$ is the number of grid points in a Monkhorst-Pack mesh.


翻译:我们提出了一个用于在随机阶段近似(RPA)下对周期系统进行相关能量计算的错位网格方法{错位网格方法{在随机阶段近似(RPA)下对周期性系统进行相关能量计算,该方法概括了最近开发的周期性第二顺序M=o}的错位网格方法(MP2)计算[Xing,Li,Lin,JCT 2021]。与标准的RPA计算相比,错位网格方法引入了微不足道的额外计算成本。它避免了一定比例的错误,对于准-1D系统以及某些准-2D和3D系统来说,它可能具有同样优势。我们用两种不同的格式来展示该方法的可适用性:直接环联组双(MPA)计算 [Xing,LI,JCT 20211] 计算。在标准MERFS(SOS EX) 修正中,第二个顺序筛选交换(SOS-PO) 也很容易用错位数方法获得。在A-salental-al-late-lational-lational-al-lock ltal-leckal-lational-deal-deal-deal-deal-deal-deal real real real ex real ex ex exal exal ex ex ex ex ex ex exal ex ex ex ex exal ex ex ex ex ex exal ex ex ex 分析, 需要用每个算算法 方法来进行一个正常式的自动计算法性 方法, 方法来进行正常的精确的精确的精确性分析。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月16日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员