In this paper, we bring consumer theory to bear in the analysis of Fisher markets whose buyers have arbitrary continuous, concave, homogeneous (CCH) utility functions representing locally non-satiated preferences. The main tools we use are the dual concepts of expenditure minimization and indirect utility maximization. First, we use expenditure functions to construct a new convex program whose dual, like the dual of the Eisenberg-Gale program, characterizes the equilibrium prices of CCH Fisher markets. We then prove that the subdifferential of the dual of our convex program is equal to the negative excess demand in the associated market, which makes generalized gradient descent equivalent to computing equilibrium prices via t\^atonnement. Finally, we run a series of experiments which suggest that t\^atonnement may converge at a rate of $O\left(\frac{(1+E)}{t^2}\right)$ in CCH Fisher markets that comprise buyers with elasticity of demand bounded by $E$. Our novel characterization of equilibrium prices may provide a path to proving the convergence of t\^atonnement in Fisher markets beyond those in which buyers utilities exhibit constant elasticity of substitution.
翻译:在本文中,我们用消费者理论来分析买家具有任意连续、连续、同质(CCH)功能的渔业市场,这些市场是代表当地不满意的优惠的渔业市场。我们使用的主要工具是支出最小化和间接效益最大化的双重概念。首先,我们使用支出功能来建造一个新的Convex方案,其双重性,如Eisenberg-Gale方案的双重性,是CCH渔业市场的平衡价格特点。然后,我们证明,我们的共性方案的双倍偏向性相当于相关市场的负过剩需求,使普遍梯度下降相当于通过t ⁇ atonment计算平衡价格。最后,我们进行了一系列实验,表明t ⁇ onnement可能以美元等价集合,在CCH渔业市场中,由需求弹性受美元约束的买家组成。我们新的平衡价格描述可能提供一条途径,证明在渔业市场中,在购买者不断展示的公用事业替代性之外,股权可能以美元等价汇合。