Inspired by "predictive coding" - a theory in neuroscience, we develop a bi-directional and dynamical neural network with local recurrent processing, namely predictive coding network (PCN). Unlike any feedforward-only convolutional neural network, PCN includes both feedback connections, which carry top-down predictions, and feedforward connections, which carry bottom-up errors of prediction. Feedback and feedforward connections enable adjacent layers to interact locally and recurrently to refine representations towards minimization of layer-wise prediction errors. When unfolded over time, the recurrent processing gives rise to an increasingly deeper hierarchy of non-linear transformation, allowing a shallow network to dynamically extend itself into an arbitrarily deep network. We train and test PCN for image classification with SVHN, CIFAR and ImageNet datasets. Despite notably fewer layers and parameters, PCN achieves competitive performance compared to classical and state-of-the-art models. Further analysis shows that the internal representations in PCN converge over time and yield increasingly better accuracy in object recognition. Errors of top-down prediction also map visual saliency or bottom-up attention. This work takes us one step closer to bridging human and machine intelligence in vision.


翻译:在神经科学的理论“预测编码”的启发下,我们开发了一个双向和动态神经网络,由本地经常性处理,即预测编码网络(PCN)。与任何进取式进取式进化式神经神经网络不同,PCN包括反馈连接,这些反馈连接带有自上而下的预测,以及进取式进取式连接,这些连接带有自下而上的预测错误。反馈和进取式连接使相邻层能够在当地和经常地互动,以完善对分层预测错误的表达方式。随着时间的推移,经常性的处理导致非线性转变的层次日益加深,使浅网络能够动态地扩展到任意的深层网络。我们培训和测试PCN,以便与SVHN、CIFAR和图像网络数据集进行图像分类。尽管层次和参数明显减少,但PCN与古典和最先进的模型相比,具有竞争性的性能。进一步的分析表明,PCN的内部表达方式随着时间的推移会趋近,在物体识别方面越来越准确。下而上下而下级的预测也有误差之处。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员