As the use of interactive machines grow, the task of Emotion Recognition in Conversation (ERC) became more important. If the machine generated sentences reflect emotion, more human-like sympathetic conversations are possible. Since emotion recognition in conversation is inaccurate if the previous utterances are not taken into account, many studies reflect the dialogue context to improve the performances. We introduce CoMPM, a context embedding module (CoM) combined with a pre-trained memory module (PM) that tracks memory of the speaker's previous utterances within the context, and show that the pre-trained memory significantly improves the final accuracy of emotion recognition. We experimented on both the multi-party datasets (MELD, EmoryNLP) and the dyadic-party datasets (IEMOCAP, DailyDialog), showing that our approach achieve competitive performance on all datasets.
翻译:随着互动机器的使用增加,情感在对话中的认知(ERC)任务就变得更加重要了。如果机器生成的句子反映了情感,就有可能进行更像人类的同情性对话。由于不考虑先前的语句,对话中的情感识别是不准确的,因此许多研究反映了对话背景,以改善性能。我们引入了COMM,一个环境嵌入模块(CoM),加上一个预先培训的记忆模块(PM),该模块可以跟踪演讲者在上下文中的记忆,并表明预先培训的记忆大大提高了情绪识别的最终准确性。我们在多党数据集(MELD、EmoryNLP)和dyadic-Parts数据集(IEMOCAP、DailyDDIalog)上进行了实验,显示我们的方法在所有数据集上都取得了竞争性的性表现。