Technological advances have enabled multiple countries to consider implementing Smart City Infrastructure to provide in-depth insights into different data points and enhance the lives of citizens. Unfortunately, these new technological implementations also entice adversaries and cybercriminals to execute cyber-attacks and commit criminal acts on these modern infrastructures. Given the borderless nature of cyber attacks, varying levels of understanding of smart city infrastructure and ongoing investigation workloads, law enforcement agencies and investigators would be hard-pressed to respond to these kinds of cybercrime. Without an investigative capability by investigators, these smart infrastructures could become new targets favored by cybercriminals. To address the challenges faced by investigators, we propose a common definition of smart city infrastructure. Based on the definition, we utilize the STRIDE threat modeling methodology and the Microsoft Threat Modeling Tool to identify threats present in the infrastructure and create a threat model which can be further customized or extended by interested parties. Next, we map offences, possible evidence sources and types of threats identified to help investigators understand what crimes could have been committed and what evidence would be required in their investigation work. Finally, noting that Smart City Infrastructure investigations would be a global multi-faceted challenge, we discuss technical and legal opportunities in digital forensics on Smart City Infrastructure.


翻译:由于网络攻击的无边界性质、对智能城市基础设施的理解程度不同以及不断调查的工作量,执法机构和调查人员将难以应对这类网络犯罪。没有调查人员的调查能力,这些智能城市基础设施可能成为网络罪犯喜欢的新目标。为了应对调查人员面临的挑战,我们提出了智能城市基础设施的共同定义。根据定义,我们利用STRIDE威胁模型和微软威胁模型工具来查明基础设施中存在的威胁,并创建一个可由有关各方进一步定制或扩展的威胁模型。接下来,我们绘制犯罪图、可能的证据来源和查明的威胁类型,以帮助调查人员了解可能发生的犯罪以及调查工作中需要哪些证据。最后,我们指出智能城市基础设施调查将是一个全球性的多面挑战,我们讨论数字法医城市的技术和法律机会。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月9日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员