We suggest a universal map capable to recover a behavior of a wide range of dynamical systems given by ODEs. The map is built as an artificial neural network whose weights encode a modeled system. We assume that ODEs are known and prepare training datasets using the equations directly without computing numerical time series. Parameter variations are taken into account in the course of training so that the network model captures bifurcation scenarios of the modeled system. Theoretical benefit from this approach is that the universal model admits using common mathematical methods without needing to develop a unique theory for each particular dynamical equations. Form the practical point of view the developed method can be considered as an alternative numerical method for solving dynamical ODEs suitable for running on contemporary neural network specific hardware. We consider the Lorenz system, the Roessler system and also Hindmarch-Rose neuron. For these three examples the network model is created and its dynamics is compared with ordinary numerical solutions. High similarity is observed for visual images of attractors, power spectra, bifurcation diagrams and Lyapunov exponents.
翻译:我们建议绘制一个通用地图,能够恢复由数字交换器提供的多种动态系统的行为。 地图是一个人工神经网络,其重量将模型系统编码。 我们假设,在不计算数字时间序列的情况下,对数字交换器是已知的,并且直接使用等式来编制培训数据集。 在培训过程中,参数变量得到考虑, 以便网络模型能够捕捉模型系统的双向假想。 理论从这个方法中受益的是, 通用模型承认使用通用数学方法, 而不需要为每个特定的动态方程式开发一个独特的理论。 形成实际的视角, 开发的方法可以被视为一种替代的数字方法, 用于解决适合当代神经网络特定硬件运行的动态交换器。 我们考虑的是洛伦茨系统、 罗斯勒系统和 Hindmarch- Roseenn。 对于这三个例子, 网络模型是创建的, 其动态与普通的数字解决方案是比较的。 在吸引器、 电源光谱、 双峰图和 Lyapunov 外壳的视觉图像中观察到高度相似性。